Utmn
Electronic Library

     

Details

Субботин, А. И. Обобщенные решения уравнений в частных производных первого порядка. Перспективы динамической оптимизации / А. И. Субботин; перевод Н. Н. Субботина. — Обобщенные решения уравнений в частных производных первого порядка. Перспективы динамической оптимизации, 2023-02-12. — Электрон. дан. (1 файл). — Москва, Ижевск: Институт компьютерных исследований, 2019. — 336 с. — Гарантированный срок размещения в ЭБС до 12.02.2023 (автопролонгация). — Книга находится в премиум-версии IPR SMART. — Текст. — электронный. — <URL:https://www.iprbookshop.ru/91967.html>.

Record create date: 9/21/2022

Subject: уравнение; динамическая оптимизация; краевая задача; дифференциальная игра; минимаксное решение

UDC: 517

LBC: 22.1

Collections: ЭБС "IPRbooks"

Allowed Actions: View

Annotation

С уравнениями Гамильтона – Якоби и другими типами уравнений в частных производных первого порядка имеют дело многие разделы математики, механики, физики и их приложений. Как правило, функции, имеющие содержательный смысл в рассматриваемых задачах, не являются достаточно гладкими, чтобы удовлетворять этим уравнениям в классическом смысле. Таким образом, возникает необходимость вводить понятие обобщенного решения и развивать теорию и методы построения этих решений. Такие теории активно создаются и развиваются в течение последних 50-ти лет. Среди получивших признание и стремительно развивающихся в последнее время концепций: энтропийные решения С.Н. Кружкова, вязкостные решения М. Крэндалла и П.Л. Лионса, обобщенные решения на базе идемпотентного анализа, предложенные В.П. Масловым. В книге излагается созданная А.И. Субботиным теория минимаксных решений, которая имеет истоки в теории позиционных дифференциальных игр Н.Н. Красовского, и может рассматриваться, как неклассический метод характеристик, где минимаксное решение должно быть слабо инвариантным относительно характеристических дифференциальных включений. Приведены теоремы существования, единственности и корректности минимаксных решений, иллюстрационные модельные примеры и приложения к теории оптимального управления и дифференциальным играм, конструктивные и численные методы построения минимаксных решений, а также необходимые факты из теории дифференциальных включений, негладкого анализа и теории классических решений уравнений Гамильтона – Якоби. Для специалистов в области теории дифференциальных уравнений, динамической оптимизации, негладкого анализа и их приложений, а также для преподавателей, студентов и аспирантов соответствующих специальностей.

Usage statistics

stat Access count: 4
Last 30 days: 0
Detailed usage statistics