Utmn
Electronic Library

     

Details

Палий, Ирина Абрамовна. Теория вероятностей. Задачник: учебное пособие для спо / И. А. Палий. — 3-е изд., испр. и доп. — Электрон. дан. — Москва: Юрайт, 2023. — 236 с. — (Профессиональное образование). — URL: https://urait.ru/bcode/515050 (дата обращения: 12.01.2023). — Режим доступа: Электронно-библиотечная система Юрайт, для авториз. пользователей. — <URL:https://urait.ru/bcode/515050>.

Record create date: 5/16/2017

Subject: Теория вероятностей и математическая статистика; Математика, статистика и механика.; Математика; Теория вероятностей и математическая статистика; Теория вероятностей; Теория вероятностей и статистика; Математика (элементы высшей математики, теория вероятностей, математическая статистика); Вероятность и статистика; Введение в теорию вероятностей и математическую статистику; Основы теории вероятностей и математическая статистика; Введение в теорию вероятности и математическую статистику; Математика. Теория вероятностей и математическая статистика; Теория вероятностей и основы статистики; Теория вероятности и математическая статистика; Введение в теорию вероятностей; Введение в математику; Теория вероятности и математической статистики; Основы теории вероятности; Основы теории вероятности и математической статистики; Теория вероятности; Теория вероятностей и математическая статистика в инженерно-техническом образовании; Основы теории вероятностей и математической статистики; Теория вероятностей и математическая; Математическая статистика и теория вероятности; Теория вероятностей. Математическая статистика; Основы математики

UDC: 519.2(075.32)

LBC: 22.171я723

Collections: Электронные книги издательства Юрайт

Allowed Actions: View

Annotation

Учебное пособие содержит задачи, охватывающие основные разделы базового курса теории вероятностей: комбинаторика, классические и геометрические вероятности, закон распределения и функция распределения дискретной случайной величины, плотность вероятности и функция распределения непрерывной случайной величины, числовые характеристики непрерывных случайных величин, неравенство Чебышева, предельные теоремы и другие. Большое число задач различной сложности предоставляет преподавателю свободу выбора при подготовке к практическим занятиям, составлении индивидуальных заданий и экзаменационных билетов. Все задачи снабжены ответами, а для наиболее сложных задач приведены указания и решения.

Usage statistics

stat Access count: 4
Last 30 days: 0
Detailed usage statistics